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ABSTRACT
Mean total (barotropic � baroclinic) mass transports of the oceanic top 1000 dbar are estimated

for two regions of the South Atlantic between 18°S and 47°S. These transports are obtained by using
Gravest Empirical Mode (GEM) fields calculated from historical hydrography with temperature and
position data from quasi-isobaric subsurface floats deployed from 1992 through 2001. The float-GEM-
estimated total mass transports reveal a Brazil Current with a southward flow of 20.9 Sv at 30°S and
46 Sv at 35°S (1 Sverdrup, Sv � 106 m3 s�1). Two recirculation cells are identified in the southwest
corner of the subtropical gyre north of 40°S, one centered at 48°W, 37°S recirculating 28.5 Sv and
another centered at 40°W, 38°S recirculating 13.9 Sv. The South Atlantic Current (SAC) flows
eastward with 50 Sv at 30°W and splits into two branches in the east, one north of 38°S transporting
19 Sv and one south of 41°S transporting 31 Sv. Of the 39.7 Sv of SAC transport that comes from the
Malvinas Current/Antarctic Circumpolar Current (ACC) system in the western basin, only 8.7 Sv
flow with the northern branch and the remaining 31 Sv flow as the southern branch out of the South
Atlantic rejoining the ACC directly (20.6 Sv) or interacting with the Agulhas Current Retroflection
(10.4 Sv). From the northern branch, only 4.7 Sv of Malvinas Current/ACC origin and 10.3 Sv of
Brazil Current origin (a total of 15 Sv) stays in the South Atlantic forming the Benguela Current,
recirculating within the subtropical gyre. The Agulhas Current Retroflection reaches westward as far
as 10°E with a transport of 48 Sv. In terms of mean total transport, the cold-water route carries 4.7 Sv
in the upper 1000 dbar whereas the warm-water route carries 8.5 Sv. However, considering the
interaction between waters from both origins, there is a total of 19.1 Sv of waters entering the Cape
Basin from the Pacific Ocean and 18.5 Sv from the Indian Ocean.

1. Introduction

The upper-layer circulation of the South Atlantic comprises an anticyclonic subtropical
gyre and a cyclonic subequatorial gyre, as well as mainly zonal equatorial and circumpolar
current systems (Peterson and Stramma, 1991; Stramma and England, 1999). The Brazil
Current is the western boundary current of the South Atlantic subtropical gyre. It flows
southward along the South America coast until it encounters the Malvinas Current and

1. Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 02882, U.S.A.
2. Current address. Department of Environmental Engineering, Federal University of Santa Catarina, Santa

Catarina, Brazil. email: regina.rodrigues@ens.ufsc.br
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forms the South Atlantic Current (SAC). The SAC flows eastward across the South
Atlantic to feed the eastern-boundary Benguela Current. The latter becomes the South
Equatorial Current (SEC), which in turn bifurcates as it approaches the coast of South
America, closing the subtropical gyre by feeding the Brazil Current to the south.

Upper and intermediate waters from the Pacific and Indian oceans enter the South
Atlantic via cold- and warm-water routes, respectively (Gordon, 1985, 1986; Rintoul,
1991; de Ruijter et al., 1999; Speich et al., 2001). Their water properties then propagate
through the upper South Atlantic to the northern North Atlantic, where they influence the
process of deep-water formation, i.e., the meridional overturning circulation (MOC). Thus
thermohaline fluxes through the South Atlantic affect global heat transports and budgets, as
well as mass and heat exchanges with the atmosphere (Trenberth and Solomon, 1994).

Because it transports heat equatorward, the South Atlantic plays a critical and distinctive
role in the global thermohaline circulation. But our knowledge, on the basin scale, of its
largely wind-driven upper and intermediate circulation is sparse. Nevertheless, during the
last two decades, a number of surveys have been conducted, largely through the World
Ocean Circulation Experiment (WOCE), and as result a better data set is now available for
the South Atlantic Ocean, including both hydrographic data and subsurface-float data.
Even though the WOCE data have provided a more accurate view of the circulation for
specific areas, a large-scale view of the South Atlantic circulation obtained in a consistent
way is still missing. Moreover, estimates of mean absolute transports are not available. We
need a uniform method that is suited for meandering eddying currents and a reference
velocity field to provide estimates of absolute transport. We also need to utilize as much of
the available data as possible to cope with the sparseness of observations. Our purpose is to
use the WOCE data in a manner that combines the density profiles and float temperature
and position measurements to produce maps of estimated baroclinic, barotropic, and total
transports. In particular, we seek to quantify the relative contributions into the South
Atlantic of colder and warmer waters respectively from Pacific and Indian Ocean origins.
According to Biastoch et al. (2008, 2009), there has been a change in the circulation of the
South Atlantic subtropical gyre and Agulhas leakage in the last three decades due to
changes in the wind stress field. This has critical implications for the MOC. Hence, it is
important to know the mean state of the subtropical gyre and the mean contributions of the
cold and warm routes for comparisons with future observational studies.

Data from RAFOS and MARVOR floats in the western South Atlantic (Boebel et al.,
1999a,b,c; Ollitrault, 1999) and the Agulhas Current Retroflection region (Boebel et al.,
2000, 2003) for the period of 1992–2001 are used here in conjunction with the Gravest
Empirical Mode (GEM) technique to estimate the mean structure of the hydrographic fields
of the region. The GEM is an efficient method for projecting the hydrographic data from
regions around strong currents, such as the Brazil, South Atlantic, and Agulhas Currents,
into geostrophic streamfunction space (Meinen and Watts, 2000; Sun and Watts, 2001).
The procedure is to use the float position data in a piecewise Eulerian way to estimate
velocity vectors and, in addition, use each float measurement of temperature and pressure
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to look up (via the GEM tables) vertical profiles of the desired hydrographic variables.
Thus, at each position along its path, each float supplies an absolute velocity vector and an
estimated profile of temperature, salinity, and specific volume anomaly. This is the
so-called “float-GEM” method, developed by Pérez-Brunius et al. (2004a, b) for use with
data from isopycnal floats.

The main objective of this study is to adapt the float-GEM technique for use with data
from isobaric floats (available for the South Atlantic) and thereby estimate mean absolute
transports in the upper 1000 dbar of the South Atlantic subtropical gyre using a uniform
methodology. Section 2 describes how the GEM fields are constructed and combined with
the float data (position, pressure, and temperature), and how the suite of many float
“velocities” and “pseudo-casts” is used to generate maps of mean barotropic, baroclinic,
and total (absolute) transports. In Section 3, the float-GEM technique is tested by
simulating float data from two WOCE hydrographic transects. Mean mass transports are
discussed in Section 4. Finally, Section 5 presents a summary and conclusions.

2. Methods

a. GEM fields

A GEM field is a projection of hydrographic data onto geostrophic streamfunction
space. In this study, the indices are (1) geopotential anomaly referenced to 1000 dbar, and
(2) pressure, so the GEM is an empirical lookup table between geopotential anomaly and
vertical profiles of temperature (T), salinity (S), or specific volume anomaly (�).

We used the following procedure to develop GEM fields for the South Atlantic.
Quality-controlled CTD and bottle data were obtained for the region 18°–50°S, 60°W–
30°E from HydroBase (Curry, 1996) and from the Alfred Wegener Institute (AWI) data set
(Olbers et al., 1992) (3503 casts used, see black dots in Fig. 1). The T and S data are used to
calculate specific volume anomaly �(S, T, p) � ��1(S, T, p) � ��1(35, 0, p) and
geopotential anomaly referenced to 1000 dbar �1000 � �0

1000 dbar �(S, T, p)dp. A correction
for seasonal variations in the uppermost 100 dbar was applied to the parameter �1000. The
resulting deseasoned data (�1000) were used to create two-dimensional mean GEM fields of
T and �; specifically, at each pressure level, the property values were fitted with a cubic
smoothing spline as a function of �1000 (see Fig. 2).

The GEM fields were calculated for four smaller subregions of the whole domain (Fig.
1) to obtain empirical relationships between �1000 and the profiles of T and �, reflecting the
spatial variability of hydrographic conditions across the area of study. These subregions
are defined according to hydrographic conditions and availability of data. They slightly
overlap each other (2°) meridionally to smooth the transition between the GEM fields.
They are separated zonally by the 15°W meridian, which corresponds approximately to the
axis of the Mid-Atlantic Ridge. The 35°S parallel is used to separate the northern and
southern parts of the region because it represents the subtropical gyre axis. The four
subregions, shown in Figure 1, are northwest (NW: 18°–36°S, 60°–15°W), southwest
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(SW: 34°–50°S, 60°–15°W), northeast (NE: 18°–36°S, 15°W–20°E), and southeast (SE:
34°–50°S, 15°W–30°E). The SW subregion T and � GEM fields are shown in Figure 2 as
an example. They reflect the familiar water mass structure in that region.

Clearly, different vertical profiles of � can generate the same vertically integrated �1000,
because the integral does not uniquely determine the integrand. Nevertheless, using
historical hydrography from many years and seasons in the studied area, each value of
�1000 is found to be associated with similar profiles of both T and S. Figure 3a shows
groups of CTD-measured temperature profiles for the SW subregion; each profile in a
group has a �1000 value within 0.2 m2 s�2 of a central value (7 to 11 m2 s�2, depending on
the group). The corresponding temperature GEM profile is also plotted and is seen to
represent well the overall structure of each measured profile within the group.

As in Sun and Watts (2001), we use a percentage variance ratio (�) to examine how well
the GEM fields represent the thermohaline fields in each South Atlantic subregion. At a
pressure level p this ratio

�	p
 �
�g

2

�2 �
�2 � �r

2

�2 � 1 �
�r

2

�2 (1)

represents the fraction of the total hydrographic variance captured by the GEM field. Here
subscript g means GEM field, r the residuals of the hydrocasts relative to the GEM field,
and the variance �2 is

�2 � �	T � T� 
2 � �	Tg � Tr � T� 
2 � �g
2 � �r

2 (2)

for temperature, and similarly for the other parameters. Thus � is the ratio of the variance
of the spline fit to that of the data at each pressure level (i.e., variances of the pink curves
and blue dots, respectively, in the bottom six panels of Fig. 2).
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Figure 1. Subregions selected for the construction of the GEM fields. Dots represent the CTD and
bottle cast locations used from HydroBase and AWI data sets.
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Figure 3b shows � for T and � for the top 1000 dbar of all four subregions. The GEM
fields capture up to 98% of the variance of the T and � data at various depths for the South
Atlantic. Averaging � over 100–1000 dbar for T and �, we find that these two fields
capture more than 40% of the variability for the NW subregion, 90% for the SW subregion,
80% for the NE subregion, and 95% for the SE subregion. The GEM fields capture a lesser

Figure 2. The final smooth GEM fields of temperature (top left) and specific volume anomaly (top
right) for the SW region. Dots at 900 dbar and 3800 dbar indicate station locations in streamfunc-
tion space. Bottom six panels show the data and their smoothing spline fits at 200, 400, and
800 dbar for temperature (left) and specific volume anomaly (right). Units are °C and 10�6 m3

kg�1.
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proportion of variability near the surface due to additional scatter of the data at pressure
levels above 100 dbar (Fig. 3a) related to variable exchanges with the atmosphere
(interannual variability, for instance). The relatively low variance ratio for the NW and NE
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Figure 3. (a) Groups of CTD temperature profiles for the SW region that have geopotential anomaly
referenced to 1000 dbar (�1000) values within 0.2 m2 s�2 of the five indicated central values,
progressively shifted to the right by 5°C. The bold dashed curves are the corresponding GEM
temperature profiles. (b) Percent of variance in temperature (solid line) and specific volume
anomaly (dashed line) captured by the GEM fields for each subregion.
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subregions is mainly due to low variance of the temperature and salinity fields in these
regions (Rodrigues, 2004).

b. Float-GEM technique for isobaric floats

Pérez-Brunius et al. (2004a, b) developed the float-GEM technique for isopycnal-float
data from the northern North Atlantic. Here we modify the technique for use with data
from quasi-isobaric floats, since such data are more abundant not only in the South Atlantic
but also in other oceans. Additionally we estimate here the true absolute geostrophic mass
transport, which becomes an increasingly important distinction as latitudes decrease. We
apply the float-GEM technique to two areas of the South Atlantic, a western area
18°S–45°S, 55°W–27°W and an eastern area 27°S–47°S, 7°W–30°E (Fig. 4). These limits
are chosen according to availability of the float data, except in the case of the 18°S limit:
north of this latitude the technique does not work well in the western South Atlantic
because the single-index GEM lookup tables fail to capture most of the hydrographic
variance.

Isobaric floats providing data used in this study are: (1) RAFOS floats deployed and
tracked during the Deep Basin Experiment in the western South Atlantic from 1992 to
1996 (75 floats) and the Cape of Good Hope Experiment (KAPEX) in the eastern South
Atlantic from 1997 to 1999 (34 floats); and (2) MARVOR floats deployed and tracked
during the Subantarctic Motions in the Brazil Basin (SAMBA) Experiment in the western
South and equatorial Atlantic from 1994 to 2001 (100 floats). They were ballasted to
follow intermediate waters between 700 and 1000 dbar (Ollitrault et al., 1994, 1995;
Ollitrault, 1999; Boebel et al., 1999a, 2000).

The combined RAFOS and MARVOR float data consist of 19,217 locations within the
two areas (Fig. 4a). Measurements of pressure pfloat, temperature Tfloat, location X� float

(and hence velocity V� float) at time tfloat are treated as a station measurement. In other
words, the float data are used in an Eulerian way. At any given station, X� float, the
geostrophic streamfunction, �float (geopotential anomaly referenced to 1000 dbar), is
obtained by looking up the ( pfloat, Tfloat) pair in the corresponding temperature-GEM
lookup table (Fig. 5). In turn, �float is used to estimate vertical profiles of specific volume
anomaly (�fg) from its GEM field. Hereafter, the subscript fg means “float-GEM.” Having
obtained specific volume anomaly profiles for all float positions, we bin-average these
profiles over the 1°�1° grid (see Fig. 4b).

Since the floats follow different pressure levels, velocity measurements from all the
floats are projected onto the same pressure surface ( pfloat � 800 dbar) using a simple
correction from the thermal-wind relation. We choose the value of 800 dbar since 60% of
the float stations used are between 775 and 825 dbar. Next, we objectively map float
velocities V� float, binned on the same 1°�1° grid, multiplied by the Coriolis parameter f to
obtain streamfunction �float on the standard float level pfloat (see Appendix A):

fV� float � k� � ��float. (3)
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Note that we objectively map fV� float (instead of V� float) because the procedure assumes zero
divergence and it is fV� float that is in fact nondivergent under the geostrophic and
hydrostatic assumptions (Gill, 1982; McDougall, 1989). Then the barotropic reference
streamfunction �bt for the reference level ( pref � 1000 dbar) is obtained:

�bt	pref
 � �float	pfloat
 � ��	pfloat, pref
, (4)

where �� is the geopotential anomaly at 800 dbar referenced to 1000 dbar and is given by
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Figure 4. (a) Locations of RAFOS (light gray dots) and MARVOR (dark gray dots) float data for the
South Atlantic Ocean. Smaller black dots in the western side of the basin represent three WOCE
transects HL (top) A17 (bottom left) and A23 (bottom right). (b) Number of float data points per
1°�1° bin for the western and eastern regions used to calculate the map of transport streamfunc-
tion. In each panel, the two rectangles outline the western and eastern areas from which float data
are used in this study.
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��	pfloat, pref
 � �
pfloat

pref

�fgdp�, (5)

using the specific volume anomaly profiles (�fg) estimated at individual float positions
with the float-GEM technique and binned on the same regular 1°�1° grid. The geopoten-
tial anomaly �� is similarly objectively mapped before being subtracted from �float. It is

Figure 5. Diagram illustrating the float-GEM technique. The streamfunction value (�float) correspond-
ing to a given float station is found by looking up the (pfloat, Tfloat) pair on the temperature GEM
field (left panel). Once �float is known, it is used to estimate the specific volume anomaly profile
from its respective GEM field (middle panel). Then, the estimated specific volume anomaly profile
is obtained and plotted in the right panel. The diagram also illustrates the float-GEM error
associated with errors in the float temperature measurement (εTfloat) generating an uncertainty in
the determination of the streamfunction value (�float � ε�float) (left panel), which in turn generates
an uncertainty in the estimate of the specific volume anomaly profile (middle and right panels). See
Appendix B for details on the float-GEM errors.
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consistent to obtain the barotropic reference streamfunction according to Eq. 4, since both
the baroclinic shear and the float absolute streamfunction on the float pressure surface are
sampled at the same time and position. Figure 6 shows schematically the velocity structure
calculations. Note that the term “barotropic reference” here refers to the flow at pref �
1000 dbar; it is neither the abyssal component, nor the vertically averaged component.

The barotropic mass transport for the top 1000 dbar is then obtained from

fM� 1000
bt � �

z	1000


0

�	z
k� � �H�btdz �
107

g
k� � �H�bt, (6)

using the hydrostatic approximation dp � ��gdz ( z positive upward) and considering the
acceleration of gravity g constant (9.81 m s�2).

The baroclinic mass transport for the top 1000 dbar is given by

fM� 1000
bc � �

z	1000


0

k� � �H�bcdz � k� � �H�, (7)

Figure 6. Schematic representation of the calculation involving the baroclinic and barotropic
components of the velocity. Note: here “true barotropic velocity” means abyssal velocity.
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where � is the potential energy anomaly, also called the Fofonoff potential, referenced to
1000 dbar (Fofonoff, 1962) obtained using the float-GEM-estimated specific volume
anomaly profiles (�fg) as follows:

� �
1

g �
0

1000 dbar

p��fgdp�. (8)

Similar to �float and ��, � is binned on the same regular 1°�1° grid and then objectively
mapped. Note that � is an exact streamfunction for fM� 1000

bc under the geostrophic and
hydrostatic approximations (Fofonoff, 1962).

Finally, the total mass transport for the top 1000 dbar can be obtained from the
barotropic and baroclinic mass transports:

fM� 1000
total � fM� 1000

bt � fM� 1000
bc , (9)

or rather the exact streamfunction (in kg s�2) for fM� 1000
total is obtained as follows:

� �
107

g
�bt � �. (10)

Note, in contrast to Pérez-Brunius et al. (2004a, b), the mass transports M� 1000
total , M� 1000

bt ,
M� 1000

bc are obtained by first calculating the horizontal gradients of their respective
streamfunctions �, 107g�1�bt, �, and afterwards dividing by local f. Table 1 illustrates
what happens if one divides the streamfunction by local f prior to taking the horizontal
gradient. The baroclinic mass transport across 36°W in 1° latitude bands from 43°S to 25°S
is obtained by taking the horizontal gradient either before or after dividing by f (M and M�,
respectively). The differences between M and M� are significant and increase as latitude
decreases, from 0.81 � 109 kg s�1 at 42–43°S to 3.26 � 109 kg s�1 at 25–26°S. Note that
integrating M between 43°S and 25°S gives a mass transport of 15.51 � 109 kg s�1

whereas M� gives 50.38 � 109 kg s�1. Thus in our studied region, the exact formulation
(M) must be used. If desired, mass transport can be converted into volume transport and
presented in Sv: 1.03 � 109 kg s�1 is roughly equivalent to 106 m3 s�1 � 1 Sv in the
ocean. However, this conversion should be done only after the exact mass transports have
been calculated. Details about the errors involved in the float-GEM technique can be found
in Appendix B.

3. Test of the float-GEM technique for the South Atlantic

It is evident that the success of the float-GEM technique depends on how well profiles of
temperature and specific volume anomaly are estimated from a single temperature and
pressure measurement using the GEM fields. To test the technique, three small sections of
WOCE hydrographic transects were used to simulate float data in the NW/SW subregions,
i.e., cruise stations simulating float stations. The first section consisted of 25 stations of
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WOCE transect A17 (Mémery et al., 2000) within 46°–36°S, 53°–44°W, the second
section consisted of 19 stations of WOCE transect A23 (Heywood and King, 2002) within
46°–33°S, along 36°W, and the third section consisted of 14 stations of WOCE transect HL
(Campos et al., 1996) within 30°–25°S, 44°–38°W (see Fig. 4a for transect station
locations). The float-GEM technique was then applied to recreate the profiles of tempera-
ture and specific volume anomaly for the WOCE transects from the GEM fields and
compared with the real (measured) profiles.

The procedure is as follows: a float measurement of temperature at a particular station is
simulated by obtaining the temperature (Tcast) at the 800 dbar level from each CTD cast,
since 800 dbar is our float pressure level. Then the simulated temperature profile is
obtained by identifying the profile with the same (Tcast, 800 dbar) pair in the temperature
GEM field, as shown in Figure 5. The corresponding geopotential anomaly value is also
determined and used to look up the specific volume anomaly profile from its respective
GEM field. Figure 7 shows the measured (solid line) and GEM-simulated (dashed line)
profiles of (a) temperature and (b) specific volume anomaly for 6 representative stations in
the A17 transect. The simulated profiles generally match the measured profiles well, except

Table 1. Baroclinic mass transport across 36°W for the top 1000 dbar obtained by taking the
horizontal gradient of the baroclinic streamfunction � before dividing by the local Coriolis
parameter f given by Mi � (�i�1 � �i)/�fi�1/ 2�, where fi�1/ 2 � ( fi � fi�1)/ 2; and after
dividing by f given by M�i � (�i�1/�fi�1�) � (�i/�fi�). Units are 10�4 s�1 for f, 105 kg s�2 for �,
and 109 kg s�1 for M, �/f, and M�. M is the correct formulation, since � is the correct
streamfunction. Baroclinic mass transports in the last row represent sums over the range 25–43°S.
Index i is the row number, increasing downward (northward).

Latitude �fi� �fi�1/2� �i �i/�fi� Mi M�i M�i�Mi

43°S 0.995 0.985 40.54 40.76 2.39 3.20 0.81
42°S 0.976 0.966 42.90 43.96 1.47 2.36 0.89
41°S 0.957 0.947 44.32 46.32 3.56 4.56 1.00
40°S 0.937 0.928 47.70 50.88 4.32 5.46 1.14
39°S 0.918 0.908 51.71 56.34 1.32 2.59 1.27
38°S 0.898 0.889 52.90 58.92 3.72 5.12 1.40
37°S 0.878 0.867 56.21 64.04 0.38 1.91 1.53
36°S 0.857 0.847 56.54 65.95 1.20 2.85 1.65
35°S 0.836 0.826 57.56 68.81 3.88 5.70 1.82
34°S 0.815 0.805 60.76 74.50 2.87 4.90 2.03
33°S 0.794 0.784 63.07 79.41 �0.88 1.31 2.19
32°S 0.773 0.762 62.38 80.72 �2.23 0.07 2.30
31°S 0.751 0.740 60.68 80.79 �0.88 1.54 2.42
30°S 0.729 0.718 60.03 82.33 �2.03 0.52 2.55
29°S 0.707 0.696 58.57 82.84 0.20 2.91 2.71
28°S 0.685 0.673 58.71 85.75 �2.96 �0.09 2.87
27°S 0.662 0.651 56.72 85.66 �1.51 1.51 3.03
26°S 0.639 0.628 55.73 87.17 0.69 3.96 3.26
25°S 0.616 56.17 91.13 ¥Mi�15 ¥M�i�50 ¥M�i�Mi�35
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that small vertical scale variability is not reproduced. The greatest discrepancies are found
within 100 dbar of the surface, where variability is not only related to meandering of
baroclinic structure but also to interactions with the atmosphere.

Since the float-GEM technique uses specific volume anomaly profiles to calculate both
the velocity shear between the float (800 dbar) and reference (1000 dbar) levels and also
the integrated mass transport for the upper ocean, we can go a step further in checking the
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Figure 7. Measured (solid line) and GEM-simulated (dashed line) profiles of (a) temperature and (b)
specific volume anomaly for 6 representative stations of the WOCE A17 transect (see Fig. 4a).
Profiles progressively offset as indicated.
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technique by calculating the geostrophic baroclinic velocity (V) and baroclinic volume
transport (Q) across the section (in the 0–1000 dbar layer and referenced to the base of the
layer) using both measured and GEM-generated specific volume anomaly profiles � (see
Appendix C). Figure 8 shows the geostrophic baroclinic velocity (V) across the upper

Figure 8. Baroclinic velocity across the selected section of the WOCE A17 transect for the upper
1000 dbar calculated from (a) the real specific volume anomaly profiles, (b) the GEM-generated
profiles, and (c) the difference between them. Positive values represent southeastward flow.
Distance is measured from the southwestern end of the transect line (see Fig. 4a). Contours are
every 5 cm s�1. Triangles in the bottom panel represent locations of stations.
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1000 dbar of the A17 section, calculated from the measured specific volume anomaly
profiles (top panel), from the GEM-generated profiles (middle panel), and the difference
between them (bottom panel). The total southeastward volume transport (Q) for the A17
transect is 22 Sv � 2 Sv estimated from the float-GEM profiles and 19 Sv estimated from
the actual CTD profiles. The float-GEM value is slightly larger than the real one. Here the
�2 Sv represents error associated with the float-GEM technique, as described in Appendix
C. The accuracy of the float-GEM estimates is �15% and the precision is �9% for A17
(for definitions see Section 4d in Pérez-Brunius et al., 2004a).

For transect A23, the directly calculated westward volume transport is 13 Sv, the
float-GEM estimated volume transport is 12.6 Sv � 0.5 Sv with an accuracy of �3% and a
precision of �4%. In this case, the error range includes the real transport and the
float-GEM value is slightly smaller than the real one for A23. For the HL transect, total
southwestward volume transport is 7.8 Sv � 0.6 Sv estimated from the float-GEM profiles
and 6 Sv estimated from the actual CTD profiles. Recognizing the fact that the GEM-
generated profiles are climatological, the float-GEM technique successfully estimates the
baroclinic volume transport, giving confidence in using this method to calculate transports
for the region covered by the floats in the South Atlantic.

4. Results and discussion

The baroclinic, barotropic, and total mass transport streamfunctions are presented in
Figure 9. Recall that the “barotropic” component is defined here as the transport due to the
depth-independent reference flow at 1000 dbar (see Fig. 6). Table 2 presents mass transport
estimates for selected sections (A–K). The transects are chosen in locations where more
float measurements are available. In regions where data availability is not a problem, they
are chosen along latitude or longitude lines where there are estimates from previous studies
for easy comparison. Mean errors in the baroclinic, barotropic, and total transport
streamfunctions are 1.8, 2.6, and 3.4 � 105 kg s�2 respectively for the western basin and
1.5, 3.2, and 3.6 � 105 kg s�2 for the eastern basin (Appendix B). In Figure 10, we plot
maps of volume transport per unit distance (corresponding to 1° in this case).

a. Brazil Current

The Brazil Current is the western boundary current of the South Atlantic subtropical
gyre. When compared to its counterparts in the other oceans, such as the Kuroshio and the
Gulf Stream, the Brazil Current is conspicuously weak. This is in part due to the fact that
most of the transport of the SEC is lost to the equatorial undercurrents and to the northern
hemisphere mainly through the North Brazil Current (Rodrigues et al., 2007).

The baroclinic transport for the Brazil Current is around 10 Sv: 10.7 Sv across 25°S
(Section B), 11.2 Sv across 30°S (Section C), and 8.3 Sv across 35°S (Section D). For the
western basin, the mean error associated with the baroclinic transport is �2.9 Sv at 25°S,
�2.4 Sv at 30°S, and �2.2 Sv at 35°S. These errors represent approximately 27% of the
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Figure 9. (a) Baroclinic, (b) barotropic, and (c) total mass transport streamfunctions for the top
1000 dbar (in units of 105 kg s�2). Contours are every 5 � 105 kg s�2 (2.5 � 105 kg s�2) for thick
(thin) contours. Solid lines (labeled in panel a) show sections where current transport estimates are
given in the text in Section 4 and Table 2. Right panels represent the mass transport, in units of
109 kg s�1 (�106 m3 s�1 � 1 Sv), corresponding to the streamfunction contour interval of 5 �
105 kg s�2.
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baroclinic transport and are similar to the difference between the baroclinic transport
estimates obtained from the GEM and real profiles for the HL transect (Section 3).
Moreover, our results are in agreement with early studies because most of those studies
used geostrophic velocities estimated from hydrographic data, and thus represent only the
baroclinic component, varying from 4.1 to 11 Sv at 23°S, from 7.5 to 14 Sv at 24°S, and
from 20 to 27 Sv at 28.5°S (Garfield, 1990; Peterson, 1992; Campos et al., 1995). This

Table 2. Baroclinic, barotropic, and total mass transports for the top 1000 dbar across selected
sections discussed in Section 4 and shown in Figure 9. Units are 109 kg s�1 (approximately
equivalent to 106 m3 s�1 � 1 Sv volume transport).

Section

Location Baroclinic Barotropic TotalCurrent

A
Brazil Current

20°S 10.5 10.2 20.7
(39°W–34°W)

B
Brazil Current

25°S �10.7 8.0 �2.7
(46°W–41°W)

C
Brazil Current

30°S �11.2 �9.7 �20.9
(49°W–46°W)

D
Brazil Current

35°S �8.3 �37.7 �46.0
(53°W–50°W)

E
SAC

50°W
(42°S–35°S) 20.3 11.3 31.6
(40°S–38°S) 6.4 39.4 45.8

F
SAC

30°W 17.6 32.4 50.0
(44°S–37°S)

G
SAC

0° longitude 8.7 10.3 19.0
(39°S–36°S)

H
SAC

0° longitude �1.0 32.0 31.0
(47°S–43°S)

I
ACR*

39°S �10.7 �37.3 �48.0
(10°E–22°E)

J
Benguela Current

33°S
(8°E–12°E) 3.6 11.4 15.0
(12°E–17°E) 12.0 �3.5 8.5

K
Benguela Current

3°E 2.4 �17.4 �15.0
(32°S–27°S)

*ACR stands for Agulhas Current Retroflection.
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large variability in the estimates arises from different choices of reference level, as well as
different times of sampling.

When the first direct current measurements became available, the transport estimates
revealed a much stronger flow in that region due to the contribution from the barotropic
component (Garfield, 1990). Our results show this is indeed true only for the region south
of 26°S due to the depth dependence of the bifurcation of the SEC. The SEC bifurcation
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Figure 10. (a) Baroclinic, (b) barotropic, and (c) total volume transport through 1°�1° cells for the
top 1000 dbar, in units of 106 m3 s�1 � 1 Sv.

836 [68, 6Journal of Marine Research



occurs around 26°S–28°S at 1000 dbar (Fig. 10b, the barotropic component refers to the
flow at 1000 dbar), in agreement with Boebel et al. (1999a), Wienders et al. (2000), and
Rodrigues et al. (2007). The barotropic component (Figs. 9b and 10b) adds an extra 9.7 Sv
to the Brazil Current across 30°S resulting in a total of 20.9 Sv, and an extra 37.7 Sv across
35°S resulting in a total of 46 Sv (Figs. 9c and 10c, Table 2), but reduces the Brazil Current
flow by 8 Sv across 25°S. Garfield’s (1990) direct measurements at 31°S show a Brazil
Current total transport of 18 Sv across a 100 km transect, similar to the value found here
(Section C). The errors associated with the total transport, �4.6 Sv at 30°S and �4 Sv at
35°S, are larger than those related to the baroclinic transport. However, the transports
themselves are also larger and thus the errors represent approximately 22% of the total
transport at 30°S and 10% at 35°S.

The total transport in the top 1000 dbar shows the SEC bifurcation at 24°S (Fig. 10c),
which is the mean bifurcation latitude for the flow in the top 1000 dbar (Rodrigues et al.,
2007). Across 20°S (Section A), the net baroclinic and barotropic components of the Brazil
Current/North Brazil Undercurrent system are both northward with a total transport of
20.7 Sv. In the western South Atlantic, the predominant circulation south of 28°S is
barotropic; north of 28°S the baroclinic component seems to dominate the circulation,
except for the North Brazil Undercurrent area.

b. Brazil-Malvinas Confluence zone

The warmer and saltier Brazil Current collides with the colder and fresher Malvinas
Current around 38°S and both turn offshore (Stramma and Peterson, 1990). This region,
called the Brazil-Malvinas Confluence, is characterized by fronts, meanders, and eddies.
The Subtropical Front (STF) coincides with the southernmost edge of the Brazil Current,
and the Subantarctic Front (SAF) with the northern edge of the Malvinas Current (Stramma
and Peterson, 1990; Peterson and Stramma, 1991). The Malvinas Current is considered a
branch of the Antarctic Circumpolar Current (ACC) that flows northeastward along the
shelf break after passing through the Drake Passage (Peterson and Whitworth, 1989).

For the confluence region across 50°W between 42°S and 35°S (Section E), we find an
eastward baroclinic transport of 20.3 Sv in agreement with the Confluence Principal
Investigators (1990) estimates (compare Fig. 9a with their Fig. 1). Even though the details
of the confluence west of 53°W are not presented, it appears that 11.3 Sv come from the
Brazil Current and the remaining 9 Sv from the Malvinas Current, similar to Figure 1 in
Confluence Principal Investigators (1990).

When the barotropic component is included, the total transport map shows a swift
eastern jet across 50°W with a transport of 45.8 Sv between 40°S and 38°S (in Section E)
and the existence of two anticyclonic recirculation cells in the southwest corner of the
subtropical gyre north of 40°S. The one centered at 48°W, 37°S recirculates 28.5 Sv and
the other centered at 40°W, 38°S recirculates 13.9 Sv. An additional recirculation flow of
approximately 9 Sv encompasses both cells west of 32°W and south of 29°S. Our results
are corroborated by Stramma and Peterson (1990; their Figs. 2 and 8).
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c. South Atlantic Current

The SAC is the eastward extension of the part of the Brazil Current that does not
participate in a tight recirculation cell west of 30°W; it also receives a contribution from the
Malvinas Current in the confluence turbulent-mixing region. It is associated with the STF
(Stramma and Peterson, 1990) and is considered the southern limb of the subtropical gyre
(Stramma and England, 1999). As the SAC flows east, it approaches the Agulhas Rings
region, where it interacts with rings pinched off westward from the Agulhas Current
Retroflection. Part of the SAC then turns north to feed the Benguela Current, closing the
South Atlantic subtropical gyre.

The SAC has a transport of 50 Sv across 30°W (Section F); 10.3 Sv of it comes from the
Brazil Current and 39.7 Sv from the Malvinas/ACC system (Figs. 9c and 10c). Mean error
for the 37°–44°S latitude range is �3.7 Sv. Stramma and Peterson (1990) estimate a
transport of 30–37 Sv whereas Smythe-Wright et al. (1998) estimate a transport of 45.7 Sv
for the SAC on the western side (Argentine Basin). However, both studies show an
eastward weakening of the SAC with a transport of 14 Sv and 28.2 Sv on the eastern side
(Cape Basin), respectively. Stramma and Peterson (1990) point out that the details
involving this eastward weakening are unknown and speculate that the SAC transport
should be less in the eastern basin because of the difference in the baroclinic structure, i.e.,
the deeper layers move in the same direction as the upper layer in the western basin,
whereas in the eastern basin there is no significant zonal flow beneath the STF. Peterson
and Stramma (1991) hypothesize that either the marked reduction occurs as the current
flows over the mid-ocean ridge, or the flow gradually stems off to the interior of the
subtropical gyre. Smythe-Wright et al. (1998) conclude that the decrease in the SAC is due
to the recirculation of subtropical water west of 20°W, rather than interaction with the
midocean ridge. Moreover, they speculate that the Brazil Current probably turns northeast
in the region around 40°W, associated with the northeast turn of the Brazil Current Front.
Reid (1994) also shows recirculation occurring around 20°W between 30°S and 40°S.

At longitude 7°W, the SAC seems to be split into two branches, one branch north of
38°S and the other branch south of 41°S (Figs. 9c and 10c). Across 0°, the northern branch
of the SAC carries 19 Sv between 39°S and 36°S and the southern branch of the SAC
carries 31 Sv between 47°S and 43°S (Sections G and H, respectively) leading to a total
transport of 50 Sv. The SAC has the same transport across 30°W and 0°, suggesting no
recirculation east of 30°W. (Mean error for this latitude range is �3.4 Sv.) Earlier studies
did not observe the SAC splitting because they only considered the baroclinic flow: the
SAC splitting is not evident in the baroclinic component (Figs. 9a and 10a), i.e., the
baroclinic part of the SAC consists of a single branch with a transport of 8.7 Sv across 0°
longitude between 39°S and 36°S (Section G). Thus these studies concluded that there was
an eastward weakening of the SAC due to recirculation within the gyre. Here we show that
the apparent “eastward weakening” of the SAC around 38°S is due to the splitting of the
current into two branches with most of its water flowing along the southern branch and
eventually rejoining the ACC.
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The northern branch of the SAC is associated with the STF, whereas the southern branch
is related to the SAF (Belkin, 1993; Belkin and Gordon, 1996; Burls and Reason, 2006).
More precisely, the SAC northern branch is located between the North and South STF
(Smythe-Wright et al., 1998). Using surface drifters, altimeter data, and wind products,
Niiler et al. (2003) generated a “hybrid” mean sea level data set from which a precise
description of mesoscale structures of the global upper ocean emerged. Mean surface
velocities obtained from the “hybrid” global mean sea level of the South Atlantic revealed
two separate eastward jets similar to the results shown here (International Pacific Research
Center, 2004; their Fig. 3).

More recently, Richardson (2007) reported the split of the SAC into two branches using
data from surface drifters and subsurface floats (800 m). Due to the sparseness of float data
in the southwest corner of the eastern region, it is important that our results agree with
Richardson (2007). The ALACE data used by Richardson (2007) provide measurements of
the southern branch of the SAC in the southwest corner of our eastern domain (see his Fig.
3). The comparison of his Figure 13 (mean velocity vectors from subsurface floats
500–1100 m) with our Figure 10b (barotropic transport, related to the velocity field at
1000 dbar) shows good agreement with respect to the position and relative intensity of the
two SAC branches. A high-resolution numerical simulation by Biastoch et al. (2008) also
reproduces the splitting of the SAC (see their Fig. 2a).

d. Agulhas Current Retroflection

The Agulhas Current is the western boundary current of the southern subtropical gyre of
the Indian Ocean, lying along the southeastern continental shelf of Africa. It is mainly
baroclinic, with more than 4/5 of its transport in the upper 1000 m (Lutjeharms, 2006).
When it reaches the southern tip of Africa, it proceeds southwest into the South Atlantic.
Near 36°S, the Agulhas Current retroflects back toward the Indian Ocean, enclosing Indian
Ocean waters in its loop, but a portion of these waters leaks into the Atlantic.

The Agulhas Current Retroflection is well represented in our results (Fig. 9), reaching
westward as far as 10°E, and coincides with the Agulhas Front (Belkin and Gordon, 1996).
It carries a transport of 48 Sv across 39°S between 10°E and 22°E (Section I), of which
38 Sv retroflect east of 19°E: the remaining 10 Sv interact with waters brought by the SAC.
Boebel and Barron (2003; their Fig. 3) have found similar features using altimeter derived
geostrophic velocities. While Figure 9c properly represents temporal average transports,
the process by which Indian Ocean water leaks into the South Atlantic, namely Agulhas
Rings (Richardson, 2007), is highly transient. In the mean, about 8.5 Sv are injected from
the retroflection region into the South Atlantic across 33°S between 12°E and 17°E (in
Section J). This value is similar to those found in the literature (see review papers by de
Ruijter et al., 1999 and Gordon, 2001).

Richardson (2007) observed an “Agulhas Extension” flowing westward from the
Agulhas Current Retroflection as far as 5–25°W near 41°S, which in our Figure 9c
represents the region between the two SAC branches west of 10°E. According to the
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author, this westward extension could be the cause of the SAC branching, with the northern
branch being part of the South Atlantic subtropical gyre and the southern branch being the
southern edge of a supergyre connecting the South Atlantic and South Indian oceans (de
Ruijter, 1982; de Ruijter et al., 1999; Speich et al., 2007). Alternatively he suggests partial
blocking by Gough Island and several seamounts (10°W–1°E) may be responsible for the
SAC branching.

e. Cold-water and warm-water routes

An important aspect of the global circulation, which has been the focus of great debate,
is the source of the warm upper-layer water that flows northward through the Atlantic to
compensate the colder southward flow of North Atlantic Deep Water as part of the global
MOC. It is believed that about 15–20 Sv of cold deep water exits the Atlantic into the
Southern Ocean, i.e., southward flow of the NADW (Bryden and Imawaki, 2001). But
there are two main hypotheses for the source of the return flow waters into the Atlantic.
One, called the warm-water route, consists of warmer, saltier waters from the Indian Ocean
entering through the Agulhas Retroflection and shedding of Agulhas Rings in the Cape
Basin (Gordon, 1986; Gordon et al., 1992; Lutjeharms, 1996; de Ruijter et al., 1999). The
other, called the cold-water route, consists of colder, fresher waters from the Pacific Ocean
brought by the ACC to the Atlantic, through the Drake Passage (Rintoul, 1991).

From the heat-balance standpoint, it has been argued that the warm-water route is the
most important source of the return flow because Indian Ocean leakage water is warmer
and saltier than its counterpart from the Pacific Ocean (Richardson et al., 2003), and
because the Antarctic circumpolar region of the Southern Ocean cannot readily gain much
heat from the atmosphere (Trenberth and Solomon, 1994). Several studies have shown that
Agulhas leakage, in the form of Agulhas rings, is the major component of the upper-layer
MOC (de Ruijter et al., 1999; Richardson et al. 2003; Lutjeharms, 2006; Richardson,
2007). Yet, there is no consensus on the transport in this leakage: mean Agulhas leakage
(upper �1000 m) into the South Atlantic is estimated to be in the range 4–10 Sv directly
into the Benguela Current and 2–15 Sv through the intermittent shedding of Agulhas rings
(Lutjeharms, 2006).

The complexity of the ocean circulation and sparseness of suitable direct measurements
have been responsible hitherto for our lack of knowledge of the circulation patterns in the
southeastern Atlantic. Here, we can follow transport isolines to determine the flow partition
in terms of its origins because by definition there is no mass transport across the transport
isolines in the mean. (Note, however, that at any specific time there is likely to be a net
mass transport by the time-varying component of the flow across these isolines.) Using this
procedure, here is what we find (see Fig. 11): of the 39.7 Sv of SAC transport that comes
from the Malvinas Current/ACC system in the western basin and reaches the eastern basin
at 0° longitude, only 8.7 Sv flow with the northern branch; the remaining 31 Sv flow as the
southern branch out of the South Atlantic rejoining the ACC directly (20.6 Sv) or
interacting with the Agulhas Current Retroflection (10.4 Sv).
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Of the 8.7 Sv that join the northern branch, 4 Sv flow southeast and interact with the
Agulhas Current Retroflection. The remaining 4.7 Sv of Malvinas Current/ACC origin and
the 10.3 Sv from the Brazil Current (a total of 15 Sv across 33°S between 8°E and 12°E, in
Section J) stays in the South Atlantic forming the Benguela Current, together with 8.5 Sv
from the Agulhas leakage (across 33°S between 12°E and 17°E, in Section J). Thus, across
33°S the total northward transport is 23.5 Sv. The Benguela Current carries 15 Sv
westward across 3°E between 32°S and 27°S (Section K). Note that this estimate of the
Benguela Current transport is probably not its total westward transport across 3°E, since
our maps (i.e., float measurements) do not extend north of 27°S.

Although, in a mean transport map, the rings themselves are not captured, the transports
associated with them are included. Mean total mass transports of the cold- and warm-water
routes are comparable in the upper 1000 dbar. From the aforementioned discussion, the
cold-water route carries directly 4.7 Sv (8°E–12°E, in Section J transport less 10.3 Sv from
the Brazil Current), whereas the warm-water route directly carries 8.5 Sv (12°E–17°E, in
Section J). Moreover, waters from both routes interact strongly in Cape Basin: 4 Sv from
the northern SAC branch and 10.4 Sv from the southern SAC branch (both of Malvinas
Current/ACC system origin) interacts with 10 Sv from the Agulhas Current Retroflection
(gray shaded area in Fig. 11). Combining these estimates, there are, entering Cape Basin,
4.7 � 4 � 10.4 � 19.1 Sv of water from the Pacific and 8.5 � 10 � 18.5 Sv from the
Indian Ocean.

These results imply that 50% (20.6 Sv) of the water from the Pacific rejoins the ACC
immediately and only 12% (4.7 Sv) directly feeds the Benguela Current. Previous studies
have shown that very little of the water exported to the Atlantic follows the direct
cold-water route from Drake Passage. For instance, Friocourt et al. (2005) have found from
numerical simulations that 4–8% of water from the Drake Passage is exported to the
equator in the Atlantic (1–2 Sv of a total of 23 Sv). But previous studies appear to have

Figure 11. Schematic illustration of the total volume transport partition for the top 1000 dbar, in
units of 106 m3 s�1 � 1 Sv. Arrows represent the transports and are colored according to their
origins. Gray shaded area represents the region where waters from both Pacific and Indian oceans
interact.
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underestimated the importance of the cold-water route. Vigorous stirring in the “Cape
Cauldron” (Boebel et al., 2003) mixes cold water from the Pacific with water in Agulhas
rings so these rings effectively carry water originating from both routes.

5. Conclusions

This study has used the float-GEM technique to obtain the structure of mean flow in the
upper 1000 dbar of the subtropical South Atlantic gyre within the Argentine and Cape
Basins. It is novel in that it (1) develops a more exact method for the GEM-determination
of mass transport and applies it to quasi-isobaric float data, and (2) uses the method
throughout the region to determine baroclinic and barotropic—and hence total—mean
transports in this top 1000 dbar layer by a uniform procedure.

Significant differences between the baroclinic and total mass transports presented in this
study highlight the importance of having direct measurements of the flow in the South
Atlantic subtropical gyre, since the streamlines inferred from hydrographic data alone (i.e.,
baroclinic streamlines) show only a small portion of the total flow in many of these areas.
The barotropic component, comprising recirculation cells in the west and, in the east,
splitting of the SAC and extension of the Agulhas Current Retroflection, greatly changes
the total circulation quantitatively and qualitatively from that of the baroclinic circulation
alone.

The baroclinic transport map suggests a weak and broad eastward flow of 20.3 Sv in the
confluence region across 50°W, with 11.3 Sv from the Brazil Current and 9 Sv from the
Malvinas Current, and 17.6 Sv across 30°W. In contrast, the total transport shows a
well-defined and strong eastward SAC flow with a transport of 50 Sv in the western basin
across 30°W, 39.7 Sv coming from the Malvinas Current/ACC system and only 10.3 Sv
from the Brazil Current. The Brazil Current carries a southward transport of 20.9 Sv at
30°S and 46 Sv at 35°S. The results shown here reveal the presence of two strong
anticyclonic cells: one centered at 48°W, 37°S recirculates 28.5 Sv and the other centered
at 40°W, 38°S recirculates 13.9 Sv.

In the eastern basin at 0° longitude, the baroclinic component of the SAC consists of a
single, weak eastward jet of approximately 8.7 Sv. The total transport map reveals a
completely different picture. The SAC splits into a northern branch carrying 19 Sv and a
southern branch carrying 31 Sv, i.e. a total of 50 Sv. The eastward weakening of the SAC
transport previously reported is due to the inability of earlier works to identify the SAC
southern branch from baroclinic estimates. Of the 39.7 Sv of SAC transport that comes
from the Malvinas Current/ACC system in the western basin and reaches the eastern basin
at 0° longitude, 4.7 Sv stay in the South Atlantic together with 10.3 Sv from the Brazil
Current, forming the Benguela Current and recirculating within the subtropical gyre. Most
of the remaining 31 Sv flows out of the South Atlantic rejoining the ACC directly or
through the Agulhas Current Retroflection. The retroflection is well captured in the mean
transport map, reaching as far as 10°E with a transport of 48 Sv.

More importantly, the results discussed here reveal that the cold-water route has a direct
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transport of 4.7 Sv and the warm-water route a direct transport of 8.5 Sv. The remaining
14.4 Sv of cold water from the Pacific interacts in Cape Basin with 10 Sv of warm waters
from the Indian Ocean. The cold-water route should be seen as an extended stream of the
ACC flowing northeastward in the western basin, which then turns eastward along with the
SAC north of 45°S. Along its way across the South Atlantic, cold waters from the Pacific
exchange heat by lateral mixing with warm waters from the Brazil Current and by air-sea
fluxes, ultimately interacting with warmer waters from the Indian Ocean brought into the
Cape Basin by the Agulhas Current Retroflection and rings (warm-water route).

Further investigation is necessary to determine how much heat is exchanged. For
instance, it is possible to estimate the heat transport of the SAC and determine the
contributions from lateral mixing and air-sea fluxes using analyses similar to those
presented by Pérez-Brunius et al. (2004b) for the North Atlantic Current-Subpolar Front
system. It is also important to know the effects of a poleward shift of the Southern
Hemisphere westerlies on both routes. Biastoch et al. (2009) have established that such a
wind shift causes an increase in the Agulhas leakage. In addition, we need to determine the
impact on the cold-water route of the concurrent poleward shift of the subtropical gyre and
the intensification of the ACC.

Finally, the temporal variability of the MOC has a vital role on the world’s climate over
decadal timescales. Recently, Biastoch et al. (2008) have shown that part of the MOC
variability originates in Agulhas leakage dynamics. This finding is based on modeling
work; we do not yet have enough data to establish the decadal variability of the MOC.
Although, several programs have been launched recently to monitor MOC variability in
different parts of the world oceans, knowledge of the mean state of previous periods is
valuable for comparison. This study has established the mean state of the subtropical gyre
and the mean contributions of the cold and warm routes for 1992–2001 period.
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APPENDIX A

Optimal interpolation

After binning each float-GEM derived field � ( fV� float, ��, �) on the 1°�1° grid shown
in Figure 4b, a two-pass multivariate optimal interpolation (OI), as described by Watts et
al. (2001), is used to map the field throughout the full grid. Subsequent to removing the
means, broad-scale background fields �bg are obtained by carrying out a preliminary pass
of the OI with a correlation length scale of 200 km. Then to resolve smaller scales, a second
pass of the OI, with correlation length scale of 100 km, is applied to residual fields �res

obtained by subtracting the background fields from the observations. According to Chelton
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et al. (1998), the first baroclinic radius of deformation for our area of study is 25–50 km,
and according to Stammer (1997) the zero crossing of the covariance functions correspond-
ing to this radius of deformation is �100 km.

The final fields are obtained by adding the means and background fields to the
interpolated residual fields. Since the OI technique is a linear estimator, we can use the
same input data to obtain an estimate of a linear operator on � by applying the operator to
the covariance function, using the same input data (Bretherton et al., 1976). In this case, the
geostrophic constraint is imposed via the covariance functions to obtain the absolute
streamfunction from the absolute velocity data (see Watts et al., 2001 for more details), but
multiplied by f since the OI method assumes non-divergence of the velocity field (hence
the need to use fV� float instead of V� float).

APPENDIX B

Streamfunction errors

Errors in the streamfunctions calculated in Section 2b are obtained as follows:

EM� total
� �EM� bt

2
� EM� bc

2 , (B1)

EM� bt
�

107

g
E�bt

�
107

g
�E�float

2 � E��
2 , (B2)

EM� bc
� E�. (B3)

E denotes the total error involved in the estimate of the variable in question (�float, ��, �)
and consists of two components, one associated with the float-GEM technique εfg and the
other associated with the binning of the variable εb, so that

E � �εfg
2 � εb

2. (B4)

For the case of both �� and �, εfg is obtained from the uncertainty associated with the
estimated profile of specific volume anomaly at each float data point, given the uncertain-
ties in the hydrographic and float data:

εfg	p, X� 
 � �εGEM
2 	p, X� 
 � εpf

2 	p, X� 
 � εTf
2 	p, X� 
. (B5)

The first error term εGEM is the GEM field mean-square error and is determined as the
rms difference between the values in a GEM bin (0.2 m2 s�2 by 25 dbar) and all the
hydrographic measurements that fall within that bin:

εGEM
2 � �	�GEM � �hydrocast


2. (B6)

The second error term is a result of error in the estimate of �float (i.e., �float � ε�float)
from the temperature GEM field due to the error in the pressure measured by the float
( pfloat � εpfloat, with εpfloat � 10 dbar). In other words, the pressure error leads to an
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uncertainty in the geostrophic streamfunction values (ε�float), which results in uncertainty
in determining the profile of specific volume anomaly εpf. This error is given by the larger
of the two differences between the profile associated with �float and the profiles associated
with �float � ε�float from the GEM field:

εpf � max ���GEM	p, �float
 � �GEM	p, �float � ε�float

�,

��GEM	p, �float
 � �GEM	p, �float � ε�float

��. (B7)

Likewise, the third error term, an uncertainty εTf in determining the specific volume
anomaly profiles, arises from the uncertainty in the temperature measured by the float
(Tfloat � εTfloat, with εTfloat � 0.1�C) (Fig. 5). Pressure and temperature measurements
of RAFOS floats have accuracies of 10 dbar and 0.1°C and MARVOR floats have
accuracies of 10 dbar and 0.03°C, respectively (Rossby et al., 1986; Boebel et al., 1995;
Ollitrault et al., 1995). Thus the float-GEM errors associated with �� and � are estimated
from εfg profiles using Eqs. 5 and 8, respectively. (Note that the three error terms in Eq. B5
are assumed independent.)

The error εb involved in the binning of the fields �� and � is simply the standard error of
the mean value of the variables �� and � in the bin in question, given by

εb �
�

�N
, (B8)

where � is the standard deviation of the float-GEM data in the bin, and N is the number of
observations in the bin. For those 4% of the bins which have N � 1, εb was determined by
interpolation from surrounding bins.

For the case of �float, the total error in Eq. B2 is given by

E�float
�

EfUfloat�y � EfVfloat�x

2
, (B9)

where f is local Coriolis parameter, �x and �y are the distances in km corresponding to 1°
of longitude and latitude, respectively. EfUfloat�y and EfVfloat�x are respectively the total
errors associated with the zonal (Ufloat) and meridional (Vfloat) velocities measured by the
floats. The float-GEM component εfg of their total error is obtained by considering a 2 km
error in the float positioning for the RAFOS floats (Boebel et al., 1997,1999a, 2000); 2 km
per day gives an error of 2.3 cm s�1. The error in estimating the float velocity for the
MARVOR floats is 1 cm s�1, according to Ollitrault et al. (1995). The binning component
of their total error is given by Eq. B8. Note that in determining the binning error, we use a
temporal decorrelation scale of 10 days for the intermediate layer of the South Atlantic
(Boebel et al., 1999c). In other words, we consider only float measurements from the same
bin that are at least 10 days apart, to ensure statistical independence.

This formulation assumes the errors in the barotropic and baroclinic components of the
streamfunctions are uncorrelated. Tables B1 and B2 show the mean values of the errors
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associated with both float-GEM estimation and binning of the variables for the western and
eastern basin regions, respectively.

APPENDIX C

Volume transport estimate and errors

The volume transport relative to 1000 dbar (Q) is estimated as follows:

Q � �
0

L �
0

1000 dbar

V	p, X� 
 dp dx, (C1)

where

Table B1. Errors involved in estimates of the mass transport for the western basin. Ufloat and Vfloat

are respectively the zonal and meridional component of the Lagrangian velocity; �float refers to
the streamfunction on the standard float level; �� to the geopotential anomaly at 800 dbar
referenced to 1000 dbar; and � to the potential energy anomaly; M� 1000

bc , M� 1000
bt , and M� 1000

total are the
baroclinic, barotropic, and total mass transports for the top 1000 dbar, respectively.

Variable
Float-GEM
error (εfg)

Binning
error
(εb)

Total
error
(E) Units

fUfloat �y 0.15 0.23 0.28 m2 s�2

fVfloat �x 0.11 0.21 0.24 m2 s�2

�float 0.13 0.22 0.26 m2 s�2

�� 0.02 0.01 0.02 m2 s�2

� 1.56 0.99 1.85 105 kg s�2

M� 1000
bc 1.56 0.99 1.85 109 kg s�1

M� 1000
bt 1.33 2.27 2.63 109 kg s�1

M� 1000
total 2.18 2.60 3.39 109 kg s�1

Table B2. Same as Table B1 except for the eastern basin.

Variable
Float-GEM
error (εfg)

Binning
error
(εb)

Total
error
(E) Units

fUfloat �y 0.22 0.30 0.37 m2 s�2

fVfloat �x 0.15 0.20 0.25 m2 s�2

�float 0.19 0.25 0.32 m2 s�2

�� 0.02 0.01 0.02 m2 s�2

� 1.10 0.96 1.46 105 kg s�2

M� 1000
bc 1.10 0.96 1.46 109 kg s�1

M� 1000
bt 1.94 2.56 3.21 109 kg s�1

M� 1000
total 2.25 2.78 3.58 109 kg s�1
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V	p, X� 
 �
1

f

��	p, X� 


�x
, (C2)

�	p, X� 
 � �
p

1000 dbar

�	p�, X� 
 dp�, (C3)

x is the distance along the transect, L transect length, X� position vector, f local Coriolis
parameter, V baroclinic velocity and � geopotential anomaly (both referenced to 1000 dbar).

The errors �εQ associated with the volume transports estimated with the float-GEM
technique are calculated as

	εQ
2 � �
i

�εQ0	i
�x	i
�2, (C4)

where

�εQ0	i
�2 � �
k

�εV	k, i
�p	k
�2, (C5)

εV	k, i
 �
1

f

ε��	k, i


�x	i

, (C6)

�ε��	k, i
�2 � �ε��k, i �
1

2�	
2

� �ε��k, i �
1

2�	
2

, (C7)

the indices (k, i) designate vertical and horizontal bins, respectively and ε� is the
float-GEM error associated with � given by Eq. B5.
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